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Backdrop: DB perf gains are hard to come by!

Slowing HW-driven perf improvements Decades of optimization saturated SW gains



Backdrop: AI interest (and HW) is exploding!

https://www.statista.com/statistics/1003890/worldwide-artificial-intelligence-hardware-market-revenues/
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VCs are pouring $2B/quarter

Market expected to exceed 
$200B/year by 2025.

Big $$$ spent on Special HW for NN
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Some examples of AI HW

Type Tech 
(nm) Architecture # Trans. Power Cache Mem

/ Storage Mem BW

NN-
Chips 7Cerebras WSE-2 2.6 T 20 KW 40 GB 4 TB - 2.4 PB 20 PB/sec

GPU 7NVIDIA A100 54 B 400 W 40 MB 40/80 GB 1.6 TB/sec 
(HBM)

* Data courtesy of Rathijit Sen
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Tensor Runtime

Tensor as de-facto API
Very large/active communities
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What about HW investments for Database? 

Existent but modest w.r.t AI

Porting to each new HW is a costly N x M problem



Our Goal: Save Humanity from Skynet!

How? By keeping the 
AI HW busy with 
database analytics 
queries

???



Main Idea: Tensor Query Processing

Compile SQL, Classical 
ML, etc. to the popular 
tensor abstraction!

CPU GPU TPU Mobile Browser

Tensor Runtimes



Pros and Cons of ”Tensor Query Processing”

Scalable Approach (tensor runtimes are getting ported to each new HW)
Leverage the massive investments in special HW

Pros

Cons

How expensive is it going to be? (engineering wise)

Is this even possible? 

What about performance? (as compared with state-of-the-art)



System
Design Parsing Layer

SQL Query



System
Design Parsing Layer

SQL Query

IR Graph
Physical Sort 
Operator Physical Plan



System
Design Parsing Layer

Planning Layer

SQL Query

Tensor program for Sort

Physical Plan

…

Tensor program for Join

Tensor program for Filter

IR Graph

Operator 
Plan



System
Design Parsing Layer
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SQL Query

IR Graph

Operator 
Plan

Tensor program for Sort

Physical Plan

…

Tensor program for Join

Tensor program for Filter

CPU GPU TPU Mobile Browser

Tensor Runtime



Example: Tensor Program for Filter

Dates as
N x 1 numeric 

Strings as UTF-8  
N x max_length

Numeric as 
N x 1 tensors

Opt 1:

Opt 2:



Implementing SQL operators using tensor ops

Tensor operators 
required for TPC-H
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Pros and Cons of ”Tensor Query Processing”
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à YES we can easily cover TPC-H
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TPCH SF 50

SQL Server and DataBricks: Standard D64s v5 (64 vcpus, 256 GiB memory)
TQP: Standard NC24ads A100 v4 (24 vcpus, 220 GiB memory) 

about 50% more expensive than the CPU HW
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Is this a one-time gain?

More perf coming from HW improvements Lots of headroom via SW optimization
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TPCH SF 50 drilldown
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Missing Optimizations

Dates as
N x 1 numeric 

Strings as UTF-8  
N x max_length

Numeric as 
N x 1 tensors

Ongoing: 
HW-customized operators
Operator Fusion
Representation / compression
Co-execution of CPU/GPU
IO-bottlenecks / Distributed exe

Future:
Tensor-aware Optimizer

Opt 1:

Opt 2:



TQP: Computing on RLE compressed data
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Query 
Plan

Sort Operator

Tensorizer
Tensor 

program

CPU GPU TPU Xbox

Parser and Optimizer 
SQL Query

Hardware

Tracing

TorchScript IR

Converter

Exporting

Antares IR

Primitive-based IR 
(PIR)

Sort PIR Operator

Fuser

Code Generator
Fused IR

…

Tensor program for Sort

Custom Tensor program for Join

Tensor program for Filter

Data 
Ingestion Executor

TorchScript traces program execution 
using data samples

Operator fusion plus kernel tuning

Leverage DirectX Shader Compiler 

Antares is a Cross-compiling Engine

https://github.com/microsoft/antares

FPGA

Optimizing TQP: Fusion + Portable custom operators

or CUDA or C++

https://github.com/microsoft/antares


Predictable usage pattern: gamers mostly play during the evenings (AKA dark time)

Interesting HW configuration: APU design where CPU and GPU share HBM (no PCI-e)

xCloud

© Microsoft Corporation                                                                                  
Azure 



TQP on Xbox (SF 10, P100)
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Pros and Cons of ”Tensor Query Processing”

Scalable Approach (tensor runtimes are getting ported to each new HW)
Leverage the massive investments in special HW

Pros

How expensive is it going to be? (engineering wise) 

Is this even possible? 

What about performance? (as compared with state-of-the-art)

Less than 20k LoC





Future directions

1. Continue Perf Work (especially around I/O and multi-GPU) 
2. Broader applicability (e.g., Classical ML with Hummingbird 

project*, pagerank) 
3. Multimodal SQL (+ Differentiable SQL) for unstructured data 

inputà single (optimizable) tensor program!

* GitHub - microsoft/hummingbird: Hummingbird compiles trained ML models into tensor computation

https://github.com/microsoft/hummingbird


Broader implications of having a DBMS co-existing with an ML runtime

SELECT 
input AS images, 
image_text_similarity_model("KFC Receipt", input) AS score 

FROM attachments
ORDER BY score DESC 
LIMIT 1

Teaser: Multi-modal query support





Conclusion

Free-ride on AI investments

How? Keep it busy running SQL (compiled to Tensors)

Great perf/cost trade-offs
Fun future directions

???

Save humanity from Skynet!
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Gray Systems Lab (GSL)

REDMOND, WA MADISON, WI

MOUNTAIN VIEW, CA

GSL is an applied and embedded research group, comprised of Data-Scientists, Engineers and Researchers. 


