User-Defined Functions in Relational Databases: Challenges and Promising Solutions based on YeSQL

Yannis Ioannidis
University of Athens & Athena Research Center
Yannis Foufoulas Kostas Chasialis Alkis Simitsis Lefteris Stamatogiannakis
Motivation

Since the beginning of (database) time and still in modern times general applications and specialized data science pipelines involve complex processing on data stored in databases and other diverse data sources.
Use case: OpenAIRE

- OpenAIRE Research Graph uses a semantic graph database to aggregate a collection of research data properties (metadata, links) for funders, organizations, researchers, communities and publishers
- Auto-discovery, collective research, advanced analysis, trustable data and indexing, interoperability
- 65 European institutions / 1,000+ data providers / 42M services last year / 140M pubs deduplicated

https://www.openaire.eu
select docid, id, fundingclass1, grantid,
 jdict('documentid', docid, 'projectid', id, 'confidenceLevel',
 sqroot(min(1.49,confidence)/1.5), 'textsnippet', context) as C1, context
from (
 select docid, id, confidence, docid, id, fundingclass1, grantid, context
 from (
 select 0.8 as confidence, docid, id, fundingclass1, grantid, context
 from (
 select 0.8 as confidence, docid, id, fundingclass1, grantid, context
 from (
 select c1, textwindow(lower(c2),-13,0,1, 'bd{5,6}bd') from pubs where c2 is not null
)
 where CAST(regexpr("(\d+)",middle) AS INT)>70000
), grants
 where fundingclass1="AKA" and (reprepresents("[b\s]academy of finland\[b\s]", context) or reprepresents("[b\s]finnish (?:?:programme for)?:cent(?:re)? of excellence|national research council|funding agency|research program)\[b\s]", context)
 and grantid=middle
)
group by docid, id
);dueio5k[5ktfmcl65eqey wb

The complete query can be found here:
Motivation

• Many programming language tools to assist developers design pipelines
• **But:** Complicated ecosystem, unscalable processing

• Relational DBMSs offer efficient large data processing
• **But:** SQL has limited expressive power

<table>
<thead>
<tr>
<th></th>
<th>Expressivity</th>
<th>Debug</th>
<th>Opt/tion</th>
<th>Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pandas API</td>
<td>High</td>
<td>Easy</td>
<td>No</td>
<td>Slow</td>
</tr>
<tr>
<td>SQL</td>
<td>Limited</td>
<td>Hard</td>
<td>Yes</td>
<td>Fast</td>
</tr>
<tr>
<td>SQL + UDFs</td>
<td>High</td>
<td>Easy</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

• UDFs in SQL merge relational and programming syntax and semantics
• **But:** Impedance mismatch between declarative (SQL) and procedural (e.g., Python) operation
Example Task: Find #records for year 2018

- Census csv data: 35M records, 818MB disk size
- Exec options
 - Pandas – in-memory
 - DuckDB – embedded DB, in-memory
 - PostgreSQL – server DB, disk, row-store
 - Vertica – server DB, disk, column-store
- Load
 - Pandas: `df = pd.read_csv("census.csv")`
 - SQL: `create table / copy table`
- Query
 - Pandas: `df[df.Year==2018].count()`
 - SQL: `select count(year) from census where year = 2018`
Example Task: Find #records for year 2018

- Census csv data: **35M** 350M records, **818MB** 8GB disk size
- Exec options
 - Pandas – in-memory
 - DuckDB – embedded DB, in-memory
 - PostgreSQL – server DB, disk, row-store
 - Vertica – server DB, disk, column-store
- Load
 - Pandas: `df = pd.read_csv("census.csv")`
 - SQL: `create table / copy table`
- Query
 - Pandas: `df[df.Year==2018].count()`
 - SQL: `select count(year) from census where year = 2018`

![Graphs showing file sizes, load time, and query time comparisons for different execution options (lower storage, faster load, and faster query)]
Example Task: Find #records for year 2018

• So, let’s move the “functions” `count` and `filter` inside the data engine
• select `count(year)` from census where `year = 2018`

```
CREATE AGGREGATE pycnt (integer) (
    INITCOND = 0,
    STYPE = integer,
    SFUNC = _pycnt
);
CREATE FUNCTION _pycnt (s integer, b integer) RETURNS integer AS $$
global s
if b is not None:
    s = s + 1
return s$$ LANGUAGE plpython3u;
```

`count` in PostgreSQL

```
CREATE LIBRARY pylib AS 'pylib.py' LANGUAGE 'Python';
CREATE TRANSFORM FUNCTION fit2 AS
    LANGUAGE 'Python' NAME 'flt2_factory' LIBRARY pylib fenced;
```

`filter` in Vertica

```
class flt2(vertica_sdk.TransformFunction):
    def processPartition(self, server_interface, input, output):
        while True:
            if input.getInt(0) == input.getInt(1):
                output.setInt(0, col)
                output.next()
            if not input.next():
                break

class flt2_factory(vertica_sdk.TransformFunctionFactory):
    def getPrototype(self, server_interface, arg_types, return_type):
        ...
        return_type.addInt()
    def getReturnType(self, server_interface, arg_types, return_type):
        return_type.addColumn(arg_types.getColumnType(0), "result")
    def createTransformFunction(cls, server_interface):
        return flt2()
```

```
count: select count(year) from census where year = 2018;
cnt: select pycnt(year) from census where year = 2018;
flt: select count(pyflt(year,2018)) from census;
cntflt: select pycnt(pyflt(year,2018)) from census;
cntflt: select pycntflt(year,2018) from census;
```
Challenges: Performance

• Impedance mismatch between declarative (SQL) and procedural (e.g., Python) operation

• Frequent context switches
• Data conversions and copies
• Excessive function calls
• Materialization of intermediate results (some engines)

• Inefficient compilation
• Limited query optimization
• Long UDF pipelines
Challenges: Fragmented space

- UDFs in many languages
 - C/C++, Java, R, Matlab, Scala, Python, ...

- Case in point: Python UDFs
 - Most popular amongst growing communities of data science and data analytics
 - Fragmented space: too many libraries, frameworks
 - Performance challenges due to conversions between Python and C/C++ (DBMS implementation choice)

Figure 2. Top-10 used libraries across notebooks.

[src: Psallidas et al. arXiv 2019]
State of the art
State of the art: UDF translation

- **Python compilers**
 - Generate bytecode for JIT compilation
 - Examples: GraalPython, Truffle, Numba, Pyston, ...
 - Several limitations in practice re library support, performance, etc.

- **Python transpilers**
 - Translate Python into other languages, typically C/C++
 - Examples: Cython, Nuitka, ...
 - Limitations include a priori data type declaration, slow compilation time, etc.
A taxonomy of solutions

• **Translation of UDFs into SQL**
 • **Pros:** Holistic UDF + Query optimization
 • **Cons:** Library/framework specific, very hard to support a full-fledged language

• **Translation of UDFs (and rel ops) into common Intermediate Representation (IR)**
 • **Pros:** Advanced fusion, loop fusion, traditional query optimization applies to some extent
 • **Cons:** Library/framework specific, very hard to support a full-fledged language

• **Embed UDFs Into data engine**
 • **Pros:** Existing arbitrary code, optimizations such as fusion/loop-fusion, vectorization, function inlining, performance boosters such as JIT/LLVM compilation
 • **Cons:** Query optimization is trickier (still doable!); requires analysis of user code, cost prediction, etc.
A taxonomy of solutions

- **UDF optimization**
 - Parallelization
 - Vectorization
 - Function inlining
 - In/Out-process
 - Tracing/method JIT
- **Execution model**
 - Tuple/Vector/Operator
 - Column/Row based
- **Query optimization**
 - Reordering
 - Fusion
 - Rules, Cost
- **Usability / Expressivity**
 - Engine/Lib specific
 - Static/Dynamic

[Y. Foufoulas, A. Simitsis – tutorials @IEEE ICDE’23, @PVLDB’23]
A taxonomy of solutions

Data engines	PostgreSQL [30]	x	x	x	x	x	x	x	x
Data engines	MonetDB/NumPy [33]	x	x	x	x	x	x	x	x
Java UDFs	Schüle et al. [37]	x	x	x	x	x	x	x	x
Java UDFs	Rosenfeld et al. [36]	x	x	x	x	x	x	x	x
Python UDFs	Kläbe et al. [25]	x	x	x	x	x	x	x	x
Python UDFs	YeSQL [13]	x	x	x	x	x	x	x	x
C++ UDFs	Tuplex [42]	x	x	x	x	x	x	x	x
C++ UDFs	UDOs [39]	x	x	x	x	x	x	x	x
Multiple languages	Tupleware [5]	x	x	x	x	x	x	x	x

Standard SQL interpretation (non-JIT) [interpreted plan w/ UDFs]
JIT-compiled UDFs [interpreted plan w/ JIT-compiled UDFs]
JIT-compiled queries [JIT-compiled plan w/ UDFs]

[Y. Foufoulas, A. Simitsis – tutorials @IEEE ICDE’23, @PVLDB’23]
Commercial/production data engines

<table>
<thead>
<tr>
<th>UDF Characteristic</th>
<th>PostgreSQL</th>
<th>MonetDB / NumPy</th>
<th>SQLite</th>
<th>Duck DB</th>
<th>SQL Server</th>
<th>Vertica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymorphic output</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Dynamic typing</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Statefulness</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Performance boosting (e.g., JIT)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vectorization</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Optimization</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
</tr>
</tbody>
</table>

Caveat: The data shown in the table is based on our understanding of publicly available documentation
The YeSQL approach
YeSQL name

You extend SQL

Enough with NoSQL!

Pronounced ‘yes’ ‘q’ ‘l’
YeSQL characteristics

- SQL extension to more usable, more expressive, and more performant Python UDFs
- Expressiveness
 - Stateful UDFs
 - Dynamically typed UDFs
 - Scalar, aggregate, and table UDFs
- Performance
 - JIT-compilation (with seamless DBMS/UDF exchange)
 - Parallelization
 - Statefulness
 - Fusion for optimization
- Usability
 - Parametric polymorphic UDFs
 - Functional syntax for UDFs
- Support for both server-based and embedded data engines
YeSQL architecture

(a) Server-based DBMS
- Connection and Function Manager
 - DBMS
 - UDF Manager
 - Python CFFI Wrapper
 - Scalar functions
 - Aggregate functions
 - Table functions

(b) Embedded DBMS
- Connection and Function Manager
 - Python CFFI Wrapper
 - SQLITE API
 - DBMS
 - Scalar functions
 - Aggregate functions
 - Table functions

Same process

YeSQL architecture diagram
Color Coding of Code Frame

(a) Static

(b) Dynamic

UDF definition

Code automatically produced by YeSQL (e.g., python wrapper or rewritten SQL statements)

YeSQL query submitted
UDF Registration

Python UDF

```python
@scalar_udf
def remove_punc(text: str) -> str:
    return " ".join(["".join([ch for ch in word if ch.isalnum()]) for word in text.split(' ')] if text is not None else None
```

PyPy / CFFI code [db agnostic] @ Wrapper

```c
/*@ remove_punc.h */
extern void remove_punc_pypy_wrap(char **input, int count, char **result);

import udf_funcs as udf

@ffi.def_extern()
def remove_punc_pypy_wrap(input, count, result):
    for i in range(count):
        _tmp = ffi.string(input[i]).decode()
        _res = udf.remove_punc(_tmp).encode()
        result[i] = lib.strdup(ffi.from_buffer(memoryview(_res))
```

MonetDB C-UDF [db specific] @ Function Manager

```sql
CREATE OR REPLACE FUNCTION remove_punc(input STRING)
RETURNS STRING
LANGUAGE C
{
    #pragma CFLAGS -I<path>
    #pragma LDFLAGS -L<path> -l<lib>
    #include "remove_punc.h"
    result->initialize(result, input.count);
    remove_punc_pypy_wrap(input.data, input.count, result->data);
}
```
YeSQL – UDF registration

Python UDF

```python
@scalar_udf
def remove_punc(text: str) -> str:
    return " ".join(["".join([ch for ch in word if ch.isalnum()]) for word in text.split(' ')])) if text is not None else None
```

PyPy / CFFI code [db agnostic] @ Wrapper

```c
/* remove_punc.h */
extern void remove_punc_pypy_wrap(char **input, int count, char **result);

import udf_funcs as udf

@ffi.defExtern()
def remove_punc_pypy_wrap(input, count, result):
    for i in range(count):
        _tmp = ffi.string(input[i]).decode()
        _res = udf.remove_punc(_tmp).encode()
        result[i] = lib.strdup(ffi.from_buffer(memoryview(_res)))
```

MonetDB C-UDF [db specific] @ Function Manager

```sql
CREATE OR REPLACE FUNCTION remove_punc(input STRING)
RETURNS STRING
LANGUAGE C
{
#pragma CFLAGS -I<path>
#pragma LDFLAGS -L<path> -l<lib>
#include "remove_punc.h"
    result->initialize(result, input.count);
    remove_punc_pypy_wrap(input.data, input.count, result->data);
};
```
YeSQL Usability and Expressiveness
YeSQL – real world query

- Example Query: Text-mine a corpus of publications to identify which publications have been funded by NSF and identify the respective NSF project identifier (7-digit string)

```sql
select var('pos'), (select toregex(term) from positives);
select texts.id, projects.id
from (select id, textwindow(keywords(text), 10, 1, 5, '\d{7}'))
from (sample 100 file 'publications.json' as input_pubs)
as texts, projects
where texts.middle = projects.grantid and
  regexpmatches($pos, lower(texts.prev||"||texts.next));
```

(polymorphic) table UDF
scalar UDF
aggregate UDF

UDF fusion: “textwindow(keywords(text), ...)” and “sample .. file” / sample(file(publications.json))

Syntax inversion: “sample 100 file ‘publications.json’”
 instead of “select * from sample (100 selection * from publications.json)”
Expressiveness and Usability

Expressiveness
- Dynamically typed UDFs
- Stateful UDFs
- Scalar, aggregate, and table UDFs

Usability
- Parametric polymorphic UDFs
- Functional syntax for UDFs

Dynamically typed UDFs
```python
def add(arg1, arg2):
    return arg1+arg2
```

Stateful UDFs
- e.g., via a global dictionary

```python
globaldict = {}
def var(arg1, arg2 = None):
    if arg2 is not None:
        globaldict[arg1] = arg2
        return True
    else:
        return globaldict[arg1]
```

Functional syntax
- `SELECT * FROM json_parse('select authors from publications');`
- `SELECT * FROM file('data.csv');`

Parametric polymorphic

```json
authors:
  { "name": "Peter" }
  { "name": "Peter", "citedby": 100 }
```

Examples
- `SELECT CAST(add(3, 2) AS int);`
- `SELECT CAST(add('Hello ', 'World') AS string);`
- `SELECT lower(var('a'));`
Usability: User Study

• Setup
 • 380 undergrads were asked to develop two algorithms:
 • Document similarity with TF-IDF
 • Document classification using a preexisting training set with weighted terms
 • Using (a) YeSQL and (b) Python and SQL but without UDFs

• Results
 • 328 (86.3%) completed successfully the task w/ YeSQL
 • 165 (43.4%) scored an excellent grade w/ YeSQL

 Significantly higher rates than w/o YeSQL
YeSQL Performance Enhancements
Performance: Where does the time gain come from?

• Query with four UDFs

```
select udf1(postal_code), udf2(facts_and_features), udf3(udf4(url))
from zillow;
```

Steps:
1. Spawned CPython process as tuple-at-a-time
2. In-process tuple-at-a-time execution
3. Vectorized execution using embedded NumPy
4. Tracing JIT-compilation with PyPy
5. Employ parallelism with multi-threaded execution
6. Fusion on JIT
7. Stateful UDF execution

typically, data scientists start here with PostgreSQL or PySpark
Performance: UDF fusion

- **Fusable UDFs**
 - The second UDF’s input data is the same as the first UDF’s output
 - The argument data types are available in the query plan
- **Fusion happens at the CFFI level**
 - A wrapper function is created just-in-time and pipelines the UDFs
 - CFFI conversions are eliminated
 - Longer sequences of instructions exploit tracing JIT
- **Example: fuse two scalar UDFs**
Performance: UDF and relational operator fusion

(1) udf → udf ⇒ fused_udf

(2) udf → rel ⇒ fused_udf or rel → udf ⇒ fused_udf
 - Remove optimization barriers caused by black-box treatment of UDFs
 - Result of fused_rel also possible [Blacher et al. @CIDR22]

(3) udf → rel → udf ↔ rel → udf → udf ⇒ rel → fused_udf
 - Additional fusion and optimization opportunities

[→, ↔, ⇒: data pipeline, operator fusion, and operator reordering, respectively]
Experimental Performance Evaluation
Evaluation

Implementation – YeSQL codebase

- ~66K lines of Python and C++
- ~18.5K lines for code definitions of 150+ Python UDFs

Setup

- Intel Core (Ivy Bridge E) i7-4930K, 3.40GHz, 6cores/12CPUs
- 64GB mem
- Ubuntu 20.04

Baselines

- **Tuplex**
- **MonetDB** (v.11.41.11)
- **PostgreSQL** (v.12.9)
- **dbX**
- **Pandas** (v.1.3.5)
- **Spark** (PySpark, v.2.4.7)

Used

- Cython (v.0.29.25) / Numba (v.0.54.1) / Nuitka (v.0.6.19.1)
- Compiled_UDF_engine (TU Ilmenau, 2022)
- PyPY (v.7.3.6 with GCC 7.3.1)
- CFFI (v.1.14.6)
- CPython (v.3.8.10)
- SQLite (v.3.31.11)

Datasets

Zillow
- listings from Boston, MA
- #columns: 10
- size/#rows: 1GB/5.6M, 5GB/28.6M, 10GB/56M

Flights
- airport and airline data
- #columns: 110
- size/#rows: 1.6GB/5M, 3.2GB/10M, 6.4GB/20M

(*: obtained by the Tuplex repo, as they used in the SIGMOD’21 paper)

Text mining
- plain texts of research publications
- pipeline:
 - mining UDFs: tokenization, stopwords removal, pattern extraction
 - join with a db table
 - pattern matching: remove false positives

ATHENA
Evaluation: Queries

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
<th>Q13</th>
</tr>
</thead>
<tbody>
<tr>
<td>#udfs</td>
<td>6</td>
<td>14</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>#scalar</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>#aggr</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>#table</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nest-dpth</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>#fused</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>23</td>
</tr>
</tbody>
</table>

fused-optim	< 1 msec												
code-gen	< 1 msec												
compile	661	728	718	602	387	534	585	515	577	543	508	597	521
runtime	8075	61977	18087	15639	139079	23092	6156	16161	5495	1349	2573	52183	
Evaluation: YeSQL vs. Data engines

- Comparison w/ SOTA tracing JIT system Tuplex @SIGMOD’21 and other popular choices
Evaluation: Fusion of UDF types

- TPC-H queries on the orders table
- 3x speedups
Conclusions and open problems

- SQL/programming language impedance mismatch still challenging
 - Pushing computation into data systems for scalability
- YeSQL promises high expressiveness, usability, and performance
- Fusion of UDFs and relational operators is key factor in YeSQL performance

On-going work and next steps
- Deeper fusion-based optimization
- Provably-correct Python-2-YeSQL translation
- Federated YeSQL query processing
YeSQL – Reading material, code bits

• Relevant publications
 • Y. Foufoulas, A. Simitsis, Y. Ioannidis: “YeSQL: Rich User-Defined Functions without the Overhead”. In PVLDB 2022.
 • Y. Foufoulas, A. Simitsis: “User-Defined Functions in Modern Data Engines”. In IEEE ICDE 2023.
 • Y. Foufoulas, A. Simitsis: “Efficient Execution of User-Defined Functions in SQL Queries”. In VLDB 2023.

• Repo:
 • Specs: https://athenarc.github.io/YeSQL/
 • Code, datasets: https://github.com/athenarc/YeSQL
YeSQL in practice

• **YeSQL in R&D projects**
 • Geospatial ontologies, text mining and information extraction, data cleaning and exploration, and machine learning on medical data

• **YeSQL in production inside OpenAire**
 • OpenAIRE implements the **Open Science** policies of Europe

 • 65 European institutions / 1,000+ data providers / 42M services last year / 140M pubs deduplicated

 • YeSQL used daily to harvest, classify, text mine, and extract information from all data providers to create the OpenAIRE Research Graph
Open Access → Open Science

- **Open Access**: A policy on access to publications (mostly) and cost models

- **Open Science**: A new paradigm of the scientific process
Open Science

- Collaboration
- Reproducibility
- Transparency
- Trust

The picture was taken from the UNESCO Open Science brochure.
Open Science Dimensions

- paper publications
- research data / FAIR data
- software / lab books
- methodologies / protocols
- educational resources
- processes (open peer review)
- annotations
- access to resources for analytics

Changing the very definition of a publication:
A live graph with interconnected explorable objects
Open Research Lifecycle

1. Clear citations
 - Ensure the accumulation of credits

2. Reveal hypothesis and method
 - Consider financiers’ requirements
 - Reveal data used
 - Clarify usage rights
 - Ensure that you give credit through citations

3. Reveal intermediate and/or failed results

4. Reuse
 - Publication and distribution
 - Publish metadata with an open licence
 - Use open evaluation
 - Ensure links between publications, data and methods
 - Make use of institutional repositories

5. Long-term preservation
 - Use services that safeguard the preservation and integrity of materials
 - Produce standard metadata

6. Storing data and results
 - Make use of service infrastructure
 - Attach a persistent identifier to your results
 - Attach descriptive metadata to your results
 - Publish metadata with an open licence
Open Science: Open Evaluation/Reviews

- Reviews are a *scientific contribution*
- Instead of 2-anonymous, 0-anonymous
- *Reviewers sign their reviews*

- Transparency
- Accountability
- Quality

- Mitigation for potential senior-to-junior bulling
European infrastructure on open scholarly communication

Non-profit organization

Established Oct 2018

Headquarters Greece

47 members

From 34 countries

Natlia Manola – CEO
Athena RC - Athens

Paolo Manghi – CTO
CNR ISTI – Pisa
OpenAIRE Graph Dataflow

Figures (Jan 2019-today):
- Direct data sources +2400
- Products +360Mi
- Harvested/mined links 236Mi +
- Full-texts 14.4Mi+

Aggregation

Deduplication
- Different records representing the same entity (results or organization) are merged in one
- Metadata records corresponding to equivalent objects are merged. Pre-print, post-print, published versions are considered equivalent for stats & monitoring purposes

Enrichment
- Full-text mining 13 algorithms:
 - dataset, project, research-initiatives, patent, software, publ affiliations, communities, concepts, covid-19, citations, similarity, classification
- Propagation of properties via relationships

Indexing

Stats analysis
- Figures (2020):
 - 1.7Mi/y API hits
 - 650K/y user visits

Figures (Apr 2021):
- Data sources 94K+
- Publications 123Mi
- Datasets 14Mi +
- Software 200K
- Others 8Mi

Funders 23
- Projects 2.8Mi
- Organizations 276K

OpenAIRE

OpenAIRE PROVIDE

Dataverse

Eprints

DataCite

EC Participant Portal

Scopus
Association for Computing Machinery